- Terminus FE1.1 USB hub board: the solution to connect four USB devicesPosted 2 months ago
- Understanding the Mechanics of 3D PrintingPosted 4 months ago
- SDS011 the Air Quality SensorPosted 5 months ago
- NIXIE STYLE LED DISPLAYPosted 8 months ago
- TOTEM: learning by experimentingPosted 8 months ago
- Google Assistant Voice Controlled Switch – NodeMCU IOT ProjePosted 9 months ago
- Water Softener Salt Level MonitorPosted 9 months ago
- Sparkly Air SensorPosted 9 months ago
- Ultra sonic distance finder with live statusPosted 9 months ago
- Windows interface to have total control over lampsPosted 9 months ago
Open Source 3D Bioprinter to Generate Complex Vessel Tissue
Researchers from the University of Toronto have developed an open-source, low-cost 3D bioprinter for constructing complex vascular tissue structures. This research contributes to the ambitious goal of many scientists working in regenerative medicine – which is to create functional 3D printed organs.
Using sacrificial materials such as gelatin and pluronic F-127 (PF127), a thermogel polymer, the research determined PF127 as the superior material for use in developing vascularized tissues.
During this experiment, researchers used their custom 3D bioprinter, which cost an estimated $3,000, to print the gelatin and PF127 materials within hydrogel constructs into a desired vascular pattern.
The modular 3D bioprinter included extruding systems 3D printed from ABS, to hold sterile 10 ml syringes. In addition, the printing system operated from an open-source Duet v0.6 controller board, which to managed five-axis motors (one in X, one in Y, and three in Z) and five independent extruders.
The bioprinter successfully processed the sacrificial materials, maintaining a uniform filament diameter, to replicate complex vascular tissue structures, making it particularly suitable for engineering smaller vascular channels.
For further information you can read the original post on 3dprintingindustry.com or the full research paper published by the Universtity of Toronto.