- Terminus FE1.1 USB hub board: the solution to connect four USB devicesPosted 2 months ago
- Understanding the Mechanics of 3D PrintingPosted 4 months ago
- SDS011 the Air Quality SensorPosted 5 months ago
- NIXIE STYLE LED DISPLAYPosted 8 months ago
- TOTEM: learning by experimentingPosted 9 months ago
- Google Assistant Voice Controlled Switch – NodeMCU IOT ProjePosted 9 months ago
- Water Softener Salt Level MonitorPosted 9 months ago
- Sparkly Air SensorPosted 9 months ago
- Ultra sonic distance finder with live statusPosted 9 months ago
- Windows interface to have total control over lampsPosted 9 months ago
Top 5 physiological computing platforms roundup, part 1/3
Physiological computing focuses on the use of biosignals for the development of interactive software and hardware systems capable of sensing, processing, reacting, and interfacing the digital and analog worlds.
However, biosignals have specific requirements for which typical physical computing platforms are not particularly tuned. Until recently, many projects ended up hindered by high costs and limited access to suitable hardware materials.
That scenario is different today, partially thanks to 5 open source DIY platforms. Follow us to discover more!
BITalino
For hassle-free usage, the hardware bundles multiple biosignal sensors, an ATMega328p microcontroller pre-programmed for real-time data streaming, a Bluetooth wireless interface, and a power-management block with a built-in LiPo battery charger. The software includes the OpenSignals real-time visualizer, programming APIs, and plenty of examples. OpenSignals is actually quite cool for rapid prototyping, given that it uses the “batteries-included” Python for high demanding tasks and HTML/CSS/JS for the UI—just check out the bare bone on GitHub.
Libelium e-Health Sensor Platform
A medical armamentarium in a board is perhaps the best way to describe the e-Health Sensor Platform made by Libelium’s Cooking Hacks open hardware division. This shield works together with an Arduino or Raspberry Pi and features blood pressure, glucose, airflow, oxygen saturation, and many other sensors you’d expect to see only on a hospital bedside. There are multiple interface options to choose from, including WiFi, 3G, ZigBee, and even the use of a camera to capture photos or videos.