- makeITcircular 2024 content launched – Part of Maker Faire Rome 2024Posted 2 months ago
- Application For Maker Faire Rome 2024: Deadline June 20thPosted 3 months ago
- Building a 3D Digital Clock with ArduinoPosted 8 months ago
- Creating a controller for Minecraft with realistic body movements using ArduinoPosted 9 months ago
- Snowflake with ArduinoPosted 9 months ago
- Holographic Christmas TreePosted 9 months ago
- Segstick: Build Your Own Self-Balancing Vehicle in Just 2 Days with ArduinoPosted 10 months ago
- ZSWatch: An Open-Source Smartwatch Project Based on the Zephyr Operating SystemPosted 11 months ago
- What is IoT and which devices to usePosted 11 months ago
- Maker Faire Rome Unveils Thrilling “Padel Smash Future” Pavilion for Sports EnthusiastsPosted 11 months ago
Remote Patient Monitoring? Now It’s Possible!
The Connected Health project aims to bring vital sign monitoring to the masses with a simple, inexpensive unit built around commodity hardware. This monitoring system is connected to the Internet, which enables remote patient monitoring.
They developed the HealthyPi HAT for the Raspberry Pi as a way of opening up the healthcare and open source medical to anyone.
HealthyPi is a HAT for the Raspberry Pi that turns it into a full-featured human vital signs monitor.
“Our objective when we began developing the HealthyPi was to make a simple vital sign monitoring system which is simple, affordable, open-source (important !) and accessible. For the sake of reproducibility, the entire PCB design is only 2-layers and can be opened/edited in the free version of Eagle. The BOM count also has been intentionally kept low”
For this application the makers used a Raspberry Pi 3, because it is affordable, easy-to-use and accessible: you can get a Raspberry Pi easily from any corner of the globe and a wide variety of support is available.
The most important part of the whole development is that HealthyPi is completely open-source, both Hardware and Software alike. All our code and hardware schematics are available on GitHub.
Another project’s focal point is the cloud connectivity. By collecting data for high-risk patients inside or outside a healthcare, eventualities can be prevented. This is possible by analyzing a large amount of historical data and use machine learning to learn from the data for predictive analysis. Is also possible the diagnosis of patient health from a healthcare professional in a remote location.
One Comment