- Holographic Christmas TreePosted 4 days ago
- Segstick: Build Your Own Self-Balancing Vehicle in Just 2 Days with ArduinoPosted 3 weeks ago
- ZSWatch: An Open-Source Smartwatch Project Based on the Zephyr Operating SystemPosted 1 month ago
- What is IoT and which devices to usePosted 1 month ago
- Maker Faire Rome Unveils Thrilling “Padel Smash Future” Pavilion for Sports EnthusiastsPosted 2 months ago
- Make your curtains smartPosted 2 months ago
- Configuring an ESP8266 for Battery PowerPosted 2 months ago
- Creating a Telegram Bot for ESP32Posted 2 months ago
- Mini Course on BlynkPosted 2 months ago
- Creating a Unique Electronic Musical Instrument: The Sound WallPosted 2 months ago
Preliminary Works at USC for a 6-axis 3D Printer (Video)
According to 3Ders (http://www.3ders.org/articles/20131006-6-axis-3d-printer.html) this video shows preliminary works for a 6-axis 3D Printer using Parallel Kinematics driven by a KFLOP board
Most additive manufacturing processes are layer-based with only three-dimensional motions in the X, Y and Z axes. However, there are drawbacks associated with such limited motions, e.g. non-conformal material properties, stair-stepping effect, and limitations on building around inserts. Such drawbacks limit the applications of additive manufacturing in many areas. To enable 6-axis motions between a tool and a work piece, we investigated a Stewart mechanism and developed a low-cost prototype system for multi-directional additive manufacturing including the Fused Deposition Modeling and CNC accumulation processes. The technical challenges in our development are the hardware design, coordinate transformation, platform constraint checking, movement simulation, tool path generation, and part fabrication. Several test cases are also presented to illustrate the capability of multi-directional additive manufacturing processes.