- Terminus FE1.1 USB hub board: the solution to connect four USB devicesPosted 2 months ago
- Understanding the Mechanics of 3D PrintingPosted 4 months ago
- SDS011 the Air Quality SensorPosted 5 months ago
- NIXIE STYLE LED DISPLAYPosted 8 months ago
- TOTEM: learning by experimentingPosted 8 months ago
- Google Assistant Voice Controlled Switch – NodeMCU IOT ProjePosted 9 months ago
- Water Softener Salt Level MonitorPosted 9 months ago
- Sparkly Air SensorPosted 9 months ago
- Ultra sonic distance finder with live statusPosted 9 months ago
- Windows interface to have total control over lampsPosted 9 months ago
Top 5 physiological computing platforms roundup, part 2/3
If you liked yesterday’s post, here is the second part:
OpenBCI
Brain activity monitoring is a daunting task no matter how one goes about it. Packing most of the features of high-end Electroencephalography (EEG) equipment in an (comparatively) affordable open hardware platform with research quality signals? That deserves respect. The team at OpenBCI stepped up to the challenge and a very successful Kickstarter campaign sealed the deal. Their board packs a high-performance TI ADS1299 analog frontend, a programmable microcontroller, memory card for local storage, and Bluetooth Low Energy (BLE) for data transfer.
You’ve got to love these guys. Brain activity monitoring is a daunting task no matter how one goes about it. Packing most of the features of high-end Electroencephalography (EEG) equipment in an (comparatively) affordable open hardware platform with research quality signals? That deserves respect. The team at OpenBCI stepped up to the challenge and a very successful Kickstarter campaign sealed the deal. Their board packs a high-performance TI ADS1299 analog frontend, a programmable microcontroller, memory card for local storage, and Bluetooth Low Energy (BLE) for data transfer.
OpenEEG
When it comes to DIY hardware for physiological computing, this is the grandfather of them all. Launched back in 2004 (a year before Arduino), OpenEEG started with the mission to offer an inexpensive alternative to commercial EEG devices to be used as a hobbyist tool or toy. The hardware includes a data acquisition board, active and passive electrodes, calibration tools, and other utilities, such as a modulator to use the sound card as an EEG recording device.
Tomorrow, the final part!