- How to Adjust X and Y Axis Scale in Arduino Serial Plotter (No Extra Software Needed)Posted 2 weeks ago
- Elettronici Entusiasti: Inspiring Makers at Maker Faire Rome 2024Posted 2 weeks ago
- makeITcircular 2024 content launched – Part of Maker Faire Rome 2024Posted 3 months ago
- Application For Maker Faire Rome 2024: Deadline June 20thPosted 4 months ago
- Building a 3D Digital Clock with ArduinoPosted 9 months ago
- Creating a controller for Minecraft with realistic body movements using ArduinoPosted 10 months ago
- Snowflake with ArduinoPosted 10 months ago
- Holographic Christmas TreePosted 10 months ago
- Segstick: Build Your Own Self-Balancing Vehicle in Just 2 Days with ArduinoPosted 11 months ago
- ZSWatch: An Open-Source Smartwatch Project Based on the Zephyr Operating SystemPosted 12 months ago
Top 5 physiological computing platforms roundup, part 2/3
If you liked yesterday’s post, here is the second part:
OpenBCI
Brain activity monitoring is a daunting task no matter how one goes about it. Packing most of the features of high-end Electroencephalography (EEG) equipment in an (comparatively) affordable open hardware platform with research quality signals? That deserves respect. The team at OpenBCI stepped up to the challenge and a very successful Kickstarter campaign sealed the deal. Their board packs a high-performance TI ADS1299 analog frontend, a programmable microcontroller, memory card for local storage, and Bluetooth Low Energy (BLE) for data transfer.
You’ve got to love these guys. Brain activity monitoring is a daunting task no matter how one goes about it. Packing most of the features of high-end Electroencephalography (EEG) equipment in an (comparatively) affordable open hardware platform with research quality signals? That deserves respect. The team at OpenBCI stepped up to the challenge and a very successful Kickstarter campaign sealed the deal. Their board packs a high-performance TI ADS1299 analog frontend, a programmable microcontroller, memory card for local storage, and Bluetooth Low Energy (BLE) for data transfer.
OpenEEG
When it comes to DIY hardware for physiological computing, this is the grandfather of them all. Launched back in 2004 (a year before Arduino), OpenEEG started with the mission to offer an inexpensive alternative to commercial EEG devices to be used as a hobbyist tool or toy. The hardware includes a data acquisition board, active and passive electrodes, calibration tools, and other utilities, such as a modulator to use the sound card as an EEG recording device.
Tomorrow, the final part!