- How to Adjust X and Y Axis Scale in Arduino Serial Plotter (No Extra Software Needed)Posted 2 weeks ago
- Elettronici Entusiasti: Inspiring Makers at Maker Faire Rome 2024Posted 2 weeks ago
- makeITcircular 2024 content launched – Part of Maker Faire Rome 2024Posted 3 months ago
- Application For Maker Faire Rome 2024: Deadline June 20thPosted 4 months ago
- Building a 3D Digital Clock with ArduinoPosted 9 months ago
- Creating a controller for Minecraft with realistic body movements using ArduinoPosted 10 months ago
- Snowflake with ArduinoPosted 10 months ago
- Holographic Christmas TreePosted 10 months ago
- Segstick: Build Your Own Self-Balancing Vehicle in Just 2 Days with ArduinoPosted 11 months ago
- ZSWatch: An Open-Source Smartwatch Project Based on the Zephyr Operating SystemPosted 12 months ago
SpiderFab will allow on-orbit Fabrication in outer Space
SpiderFab technology from Tethers Unlimited will enable on-orbit fabrication:
TUI is currently developing a revolutionary suite of technologies called “SpiderFab” to enable on-orbit fabrication ofof large spacecraft components such as antennas, solar panels, trusses, and other multifunctional structures. SpiderFab provides order-of-magnitude packing- and mass- efficiency improvements over current deployable structures and enables construction of kilometer-scale apertures within current launch vehicle capabilities, providing higher-resolution data at lower life-cycle cost.
Challenge Addressed: Currently, a significant fraction of the engineering cost and launch mass of space systems is required exclusively to enable the system to survive launch. This is particularly true for systems with physically large components, such as antennas, booms, and panels, which must be designed to stow for launch and then reliably deploy on orbit. Furthermore, the sizes of apertures and spacecraft structures are limited by the requirement to stow them within available launch fairings. Deployable structures and inflatable/rigidizable components have enabled construction of systems with scales of several dozen meters, but their packing efficiency is not sufficient to enable scaling within available launch shrouds to the kilometer-size baselines desired for applications such as long-baseline interferometry and sparse aperture sensing.
via TUI.